首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  国内免费   4篇
地球物理   3篇
地质学   6篇
  2020年   2篇
  2017年   1篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The basement of the Philippine Mobile Belt (PMB) is mainly composed of ophiolites that are mostly overlain by Paleogene to Miocene turbidites in central Luzon. To clarify the geological development of the PMB with respect to the initial stage of the arc volcanism (eg. Yumul et al., 2003, 2008; Dimalanta and Yumul, 2003; Suzuki et al., 2011), radiolarian dating was examined in siliceous sediments associated with the ophiolites and turbidites. The samples were collected from sites identified with the Zambales and Montalban ophiolites, basic tuff phyllites in NW Din-galan, and their overlying formations.  相似文献   
2.
Alternating chert–clastic sequences juxtaposed with limestone blocks, which are units typical of accretionary complexes, constitute the Buruanga peninsula. New lithostratigraphic units are proposed in this study: the Unidos Formation (Jurassic chert sequence), the Saboncogon Formation (Jurassic siliceous mudstone–terrigenous mudstone and quartz‐rich sandstone), the Gibon Formation (Jurassic(?) bedded pelagic limestone), the Libertad Metamorphics (Jurassic–Cretaceous slate, phyllite, and schist) and the Buruanga Formation (Pliocene–Pleistocene reefal limestone). The first three sedimentary sequences in the Buruanga peninsula show close affinity with the ocean plate stratigraphy of the North Palawan terrane in Busuanga Island: Lower–Middle Jurassic chert sequences overlain by Middle–Upper Jurassic clastics, juxtaposed with pelagic limestone. Moreover, the JR5–JR6 (Callovian to Oxfordian) siliceous mudstone of the Saboncogon Formation in the Buruanga peninsula correlates with the JR5–JR6 siliceous mudstone of the Guinlo Formation in the Middle Busuanga Belt. These findings suggest that the Buruanga peninsula may be part of the North Palawan terrane. The rocks of the Buruanga peninsula completely differ from the Middle Miocene basaltic to andesitic pyroclastic and lava flow deposits with reefal limestone and arkosic sandstone of the Antique Range. Thus, the previously suggested boundary between the Palawan microcontinental block and the Philippine Mobile Belt in the central Philippines, which is the suture zone between the Buruanga peninsula and the Antique Range, is confirmed. This boundary is similarly considered as the collision zone between them.  相似文献   
3.
Abstract Analysis of the 12 samples taken from two horizons (the pre-1991 Mount Pinatubo eruption and the post-1991 Mount Pinatubo eruption layers) of the six deep water cores that were collected along the Eastern South China Sea shows that the absolute abundance of Recent benthic foraminifera (total assemblage) in the post-eruption layer is much lower compared to the pre-eruption layer. The post-eruption layer also shows lower diversity with relative high abundance of Quinqueloculina spp., which probably form part of the recolonization fauna. These observations suggest that environmental stability plays a vital role in the distribution of foraminifera in the eastern margin of the South China Sea. The disturbance created by the immense amount of pyroclastic materials that originated from the 1991 eruption of Mount Pinatubo has resulted in the dilution and, eventually, the decimation of most of the benthic foraminifera. The species that were able to survive might have taken advantage of the small amounts of available nutrient supply. These might also be the species that were able to adapt quickly to the changes in the environmental conditions.  相似文献   
4.
A number of geological studies have already been conducted on the Zambales Ophiolite Complex (ZOC), a north-south trending complete ophiolite sequence exposed in the western portion of Central Luzon, Philippines. Previous works recognized the ZOC as being made up of two blocks, the Acoje and the Coto, acting as an arc-back arc pair sometime during the Eocene.  相似文献   
5.
Northwestern Ilocos Norte in Luzon, Philippines, exposes cherts, peridotite and a variety of metamorphic rocks including chlorite schist, quartzo‐feldspathic schist, muscovite schist and actinolite schist. These rocks are incorporated within a tectonic mélange, the Dos Hermanos Mélange, which is thrust onto the turbidite succession of the Eocene Bangui Formation and capped by the Upper Miocene Pasuquin Limestone. The radiolarian assemblages constrain the stratigraphic range of the cherts to the uppermost Jurassic to Lower Cretaceous. Stratigraphically important species include Eucyrtidiellum pyramis (Aita), Hiscocapsa acuta (Hull), Protunuma japonicus (Matsuoka & Yao), Archeodictyomitra montisserei (Squinabol), Hiscocapsa asseni (Tan), Cryptamphorella conara (Foreman) and Pseudodictyomitra carpatica (Lozyniak). The radiolarian biostratigraphic data provide evidence for the existence of a Mesozoic basinal source from which the cherts and associated rocks were derived. Crucial to determining the origin of these rocks is their distribution and resemblance with known mélange outcrops in Central Philippines. The mélange in the northwestern Ilocos region bears similarities in terms of age and composition with those noted in the western part of the Central Philippines, particularly in the islands of Romblon, Mindoro and Panay. The existence of tectonic mélanges in the Central Philippines has been attributed to the Early to Middle Miocene arc–continent collision. This event involved the Philippine Mobile Belt and the Palawan Microcontinental Block, a terrane that drifted from the southeastern margin of mainland Asia following the opening of the South China Sea. Such arc–continent collision event could also well explain the existence of a tectonic mélange in northwestern Luzon.  相似文献   
6.
New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.  相似文献   
7.
8.
The collision of the Palawan microcontinental block with the Philippine mobile belt had significantly influenced the geological evolution of the Philippines. Multiple collisions involving several fragments, through space and time, resulted into the collage of terranes of varying origin exposed in this part of central Philippines. Cusping of the overriding plate, volcanic arc gap, ophiolite emplacement, incipient back-arc rifting, island rotation and tilting, raised coastal terraces, metamorphism, intrusion of igneous rocks and steepened subducted slab as seen in focal mechanism solutions are some of the manifestations of this collision. A late Early Miocene to early Middle Miocene age (20–16 Ma) is proposed for the major collision between the Palawan indenter and the Philippine mobile belt. The collision boundary is located from the northern part of Mindoro through the central mountain range swinging east of Sibuyan Island in the Romblon Island Group and finally threading along the Buruanga Peninsula and eastern side of the Antique Ophiolite Complex before exiting and connecting with the Negros Trench. The collision, through accretion and crustal thickening, has contributed to the crustal growth of the Philippine archipelago.  相似文献   
9.
The proto-Philippine Sea Plate(pPSP)has been proposed by several authors to account for the origin of the Mesozoic supra-subduction ophiolites along the Philippine archipelago.In this paper,a comprehensive review of the ophiolites in the eastern portion of the Philippines is undertaken.Available data on the geology,ages and geochemical signatures of the oceanic lithospheric fragments in Luzon(Isabela,Lagonoy in Camarines Norte,and Rapu-Rapu island),Central Philippines(Samar,Tacloban,Malitbog and Southeast Bohol),and eastern Mindanao(Dinagat and Pujada)are presented.Characteristics of the Halmahera Ophiolite to the south of the Philippines are also reviewed for comparison.Nearly all of the crust-mantle sequences preserved along the eastern Philippines share Early to Late Cretaceous ages.The geochemical signatures of mantle and crustal sections reflect both mid-oceanic ridge and suprasubduction signatures.Although paleomagnetic information is currently limited to the Samar Ophiolite,results indicate a near-equatorial Mesozoic supra-subduction zone origin.In general,correlation of the crust-mantle sequences along the eastern edge of the Philippines reveal that they likely are fragments of the Mesozoic pPSP.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号